Great Northern Virgo <13172> is a broadly adapted great northern bean variety ideally suited to Nebraska and Colorado production regions.

Virgo has shown significantly higher yield potential than traditional great northern beans, such as Marquis and Beryl. It’s upright architecture allowing for ease in direct harvest provides great flexibility for farmers come harvest time. In addition the Virgo’s architecture keeps the plant standing through potential rains as it matures which aids in retaining product quality.

Assuming a 321 lbs./AC yield advantage compared to Marquis. Growing Virgo will potentially increase your profit by $80/AC on $25/cwt. beans. This amounts to $8,000 on 100 acres and the added benefit of upright architecture.

Plant Variety Protection for GN Virgo <13172> is applied for. Unauthorized propagation of this variety is prohibited.

- A flexible variety that performs well on a range of different soil types.
- Excellent upright architecture suitable for direct harvest.
- Matures 91-95 days or about 3 days later than Marquis.
- Approximate seed count is 1,264 sds./lb. compared to Marquis seed count of 1,473 sds./lb.
- It has shown resistance to prevalent strains of rust that currently affect the Nebraska and Colorado growing regions.

To purchase seed, contact your local Kelley Bean Co. representative
www.kelleybean.com

All variety information presented herein is based on field and laboratory observations. Actual crop yield and quality are dependent upon many factors beyond our control. Since environmental conditions and local practices may affect variety characteristics and performance, we disclaim legal responsibility therefore. Read all tags and labels. They contain important conditions of sale, including limitations of warranties and remedies.
Spilling the Beans!

By Dan Hinman
NDBGA Board President

Spring is slowly arriving with some of the first green fields beginning to show up. As we approach dry bean planting, we have much anticipation of what the new season will bring. After many of us faced challenges and difficult growing conditions last year, it is welcome to look to the new year with optimism of a great year. I hope many of you took the opportunity to attend Bean Day last month and received some knowledge and advice on ways we can make this year successful.

With the coming time of activity and so much on our minds concerning everything in the world, I would like to remind everyone to take a minute to remember their safety. I wish everyone a successful year and to keep the optimistic outlook for a great season.

About the Bean Bag

The Bean Bag” is a regional publication for the dry bean industry targeted to growers and decision-makers involved in the production and sales of Nebraska-grown dry edible beans.

“The Bean Bag” is published four times a year: Winter, Spring, Summer, and Autumn editions by the Nebraska Dry Bean Growers Association, a nonprofit organization of dry edible bean growers in Nebraska.

Publishing articles or advertisements in “The Bean Bag” does not constitute an endorsement of the views or products by the Nebraska Dry Bean Growers Association.

All materials published can be reproduced if credited to “The Bean Bag”. Address all editorial, advertising and mailing material to:

The Bean Bag
4502 Avenue I, Scottsbluff, NE
308-633-1387
Editor: Lesli Howell

Subscriptions to “The Bean Bag” for Nebraska dry bean producers are provided compliments of the Nebraska Dry Bean Commission. Others may purchase subscriptions for $25 a year by sending a check and subscription information to the Nebraska Dry Bean Growers Association, 4502 Avenue I, Scottsbluff, NE. 69361.
As the new Bean Bag Editor and NDBGA Office Manager, I have “big” shoes to fill as Debi left to pursue other interests. She’s done an excellent job and we’ll all miss her talent and experience! I appreciate all the work that went into training me the last few months.

On the home front, our family farms in Sioux County, north of Morrill, NE. We raise a combination of beans, corn, wheat, and hay as well as feed cattle. My husband is very involved with both NDBGA and NDBC. Our three kids are in college, and this opportunity was a blessing in disguise to help resolve the empty-nest syndrome.

NDBGA’s next event will be participating with the Panhandle Research and Extension Center to put on the field tour this summer called PARTT. However, with all the cancelations due to the Coronavirus, I’m not sure how things stand. Stay tuned for the summer edition and check out our website and facebook page for updates.

Prayers and blessings to those impacted by the Coronavirus and any issues caused by self-isolation and the quarantine. Thank goodness we live where we do! Time will tell how much we are impacted, but we hope for better days for you, your families, and friends.

But, it’s time for spring and planting! I know our family is chopping at the bit to get started, and we’re hopeful for a good year in the great state of Nebraska!
2020 Bean Day In Review

2020 SCHOLARSHIP WINNER!

Nebraska Dry Bean Growers Association would like to congratulate our $500 College Scholarship winner! Our winner showed excellent grades, leadership abilities and involvement in bean production. We look forward to seeing him succeed in his education.

Jonathan Pieper
Expected Graduation Date - May 2020
Eastern Wyoming College and continuing for a Bachelors Degree

2020 Bean Day In Review

Sec of State Bob Evnen & Dir of Ag Steve Wellman

Donations from Bean Day went to the Cornerstone Fellowship Church in Bayard, Pastor Larry Russel. They have a Food Pantry Ministry that serves 60-70 families on a monthly basis. Thank you again for your generous donations!

Thank you to everyone that participated and attended this years Bean Day!!!

THE BEAN BAG SPRING 2020
Our office receives a “ton” of information via websites, articles, and emails. In each issue, I will try to list pertinent information and/or list websites that come across my desk that bean growers may find of interest to them.

USDBC Response to COVID-19

The U.S. Dry Bean Council is up and fully operational during this challenging time for the country and for the entire world. All global events are canceled through the end of May and possibly longer, as the USDBC reevaluates in accordance with global standards and recommendations.

U.S. and global staff are all working full time from home offices and keeping global programs running. Programming will be moving to digital platforms in the very near future to make up for the current inability to conduct site visits and in-person trade servicing.

As agriculture is considered a critical industry, farmers are working full steam ahead to prepare for dry bean planting and to allow the industry to continue to meet U.S. and global demand without interruption. The USDBC will be communicating more frequently through all social media and digital means.

Nebraska Department of Agriculture - Coronavirus Disease 2019 (COVID-19) Resources

https://nda.nebraska.gov/COVID-19/

USDA Bean Market News 2019 Summary

USDA World Agricultural Supply and Demand Estimates

https://www.usda.gov/oce/commodity/wasde/

click on one of the file types to get a report (by month)

ECONOMIC AND TRADE AGREEMENT BETWEEN THE GOVERNMENT OF THE UNITED STATES OF AMERICA AND THE GOVERNMENT OF THE PEOPLE’S REPUBLIC OF CHINA PREAMBLE

https://ustr.gov/sites/default/files/files/agreements/phase%20one%20agreement/Economic_And_Trade_Agreement_Between_The_United_States_And_China_Text.pdf

US Dry Bean Council

https://eatusabeans.com/
Celebrate Nebraska Agriculture!

National Ag Week was March 22-28. Since agriculture is Nebraska’s number one industry, Ag Week is a good time to have a conversation about agriculture and recognize and thank the people behind the food, feed and fuel we depend on every day.

When agriculture does well, our state does well. Even after last year’s challenges with blizzards, flooding, low prices, etc., Nebraskans pulled together. The dedication, resourcefulness and resiliency of Nebraska ag producers helped keep the state’s ag industry strong. These top national rankings from the U.S. Department of Agriculture show what a strong Nebraska ag industry looks like.

Nebraska is first in the nation in beef and veal exports (2018), first in Great Northern bean production (2018) and first in popcorn production (2017). We are second in the nation for: all cattle and calves (Jan. 1, 2020); all cattle on feed (Jan. 1, 2020); commercial red meat production (2019); and ethanol production (Jan. 2019).

Nebraska also has a reliable supply of corn (third in the nation—2019) and soybeans (fourth in the nation—2019) for livestock feed and renewable fuels. All of these rankings and more make Nebraska agriculture worth celebrating.

To highlight how important agriculture is to our economy, just look at the numbers. Nebraska’s ag industry adds more than $21 billion a year to the state’s economy (2018). Ag exports, $6.8 billion of that number, are only part of the story. Every dollar in ag exports generates $1.28 in economic activities such as transportation, finance, warehousing and production.

Even with all of Nebraska’s top national rankings in agriculture, there is room to grow and many ways to do it. For example, Nebraska agriculture continues to grow and add value by expanding livestock production, attracting investments and business expansions, and growing international trade.

International trade is particularly encouraging as Nebraska supports several trade missions and hosts many international groups every year. Last year, the Department of Agriculture team promoted Nebraska’s world-class crops and livestock during several trade missions led by Gov. Pete Ricketts including trips to Mexico, Vietnam, Japan and Germany.

Since Nebraska farmers and ranchers produce more food than we use, we need to continue to help expand our domestic and international markets for their products. Nebraska farmers and ranchers continue to increase their production while conserving our natural resources. Their safe, high quality food products fill our plates and fuel tanks here and around the world. We’ve started 2020 with good news about trade including the passage of USMCA (U.S.-Mexico-Canada agreement) and a phase-one trade deal with China.

International trade is also a good opportunity to share the story of Nebraska agriculture. A story that needs to be told on the home front, as well. I can share that story, as I’ve been involved with agriculture my whole life. Since one in four jobs in Nebraska are related to agriculture, others are stepping up and talking about Nebraska agriculture, too.

Agriculture touches everyone’s lives and connects all of us somehow. That’s why sharing information about agriculture is so important. It helps people understand that agriculture is more than farming. It takes a whole industry of people to grow your food and get it to your table.

Thank you for the opportunity to shine a spotlight on Nebraska agriculture. As always, remember to thank the farmers, ranchers and ag industry for providing us with the food, feed and fuel that we use each and every day.
Use of Tepary Beans to overcome Biotic and Abiotic Stresses in Dry Beans

Santos Barrera1 and Carlos A. Urrea2
1PhD student, University of Nebraska-Lincoln, 2Dry Bean Breeding Specialist University of Nebraska-Panhandle Research and Extension Center, Scottsbluff, NE

Santos Barrera, a native of Colombia, is pursuing his Ph.D. studies at the University of Nebraska, Agronomy & Horticulture Department. The Nebraska Dry Bean Commission sponsors his studies.

Mr. Barrera’s work focuses on overcoming abiotic and biotic stresses in dry beans (P. vulgaris). Specifically, his work addresses common rust caused by Uromyces appendiculatus, a highly virulent and diverse pathogen that can induce susceptibility in dry beans (biotic stressor), and drought and heat, two of the leading constraints of climate change that significantly reduce the yield of dry beans (abiotic stressors). To overcome these stresses, he is using a species related to dry bean called tepary beans (P. acutifolius), which have broad rust resistance and are drought and heat tolerant.

Although tepary beans are a prospective genetic source of disease resistance and drought/heat tolerance for dry beans, moving genes from tepary to dry beans is challenging because hybridization between the two species typically requires embryo rescue. However, while working at the International Center for Tropical Agriculture (CIAT), Mr. Barrera developed some bean lines that are suitable for hybridization without embryo rescue. These lines can function as bridge parents to move desirable genes from tepary to dry beans.

To structure a dry-tepary bean crossing program, Mr. Barrera identified tepary parents that were drought and heat tolerant as well as rust-resistant by evaluating 22 tepary genotypes under several drought and heat stress trials and artificial inoculations with rust. The drought experiments were conducted in a humid tropical environment at CIAT, Colombia, a semi-arid environment at the University of California, Davis, CA, and a semi-arid climate at the University of Nebraska, Scottsbluff, NE. Although drought reduced tepary bean yields, four tepary beans showed a high drought tolerance at all locations (TEP22, TEP23, G40068, and G40173A).

Performance under drought and well-watered conditions were highly correlated. Heat trials were conducted in two hot (73°F and 77°F average night temperatures) and humid tropical locations in Colombia and one desert climate (80°F average night temperature) in El Centro, CA. Heat stress significantly reduced tepary bean yield in all three locations. However, some tepary beans (TEP22, TEP23, G40019, G40119, and G40036) yielded greater than 668 lbs/acre in the trials conducted in Colombia. Under extreme heat in El Centro, CA, teparies such as TEP23 performed exceptionally well, whereas the yield of dry beans was zero, demonstrating that dry beans do not tolerate heat (Figure 1).

Mr. Barrera also identified several highly rust-resistant tepary beans through artificial inoculations, with eight of the most representative rust races present in the USA. These races render susceptible all known rust resistance genes in dry beans. His rust evaluations revealed that all dry bean checks were susceptible to one or more of the races of U. appendiculatus.

Conversely, four domesticated tepary bean accessions (G40142, G40148, G40161, and G40237A) and two improved lines (TEP 22 and TEP 23) were immune to all eight races (Table 1). The immune reaction (no visible symptoms) exhibited by six tepary beans is not known to occur in common bean. Moreover, two domesticated tepary bean accessions (G40274 and G40279) and one wild P. parvifolius (G40264) accession, were also resistant to all eight races with either hypersensitive reactions (HR) or tiny sporulating pustules (TP). The HR and TP reactions do occur on common beans. In addition, one domesticated tepary bean (G40019), one common bean (SEF10), and five interspecific lines (INB 834, INB 841, VAP 1, VAP2, VAP 3), were all resistant to the same five races but were susceptible to races 31-22 and 22-52 (Table 1). These results suggest that new and unique rust resistance genes are present in tepary beans that differ from the resistance genes in dry beans. …
Figure 1. Evaluation of the tepary bean yield in kilograms per hectare (lbs/acre) under drought stress vs. heat stress.

Low pods? No problem!
The FDI FlexDrafter® featuring MacDon Flex-Float Technology® is your best friend in low podding ground-hugging crop. Our Flex system follows ground contours for a clean, close shave, while the Active Float System allows for instant lateral and vertical float response over rolling and uneven terrain. The result: smooth, consistent, heads-first feeding that significantly boosts combine productivity.

See it in action and find your local dealer at MacDon.com
Currently, Mr. Barrera is crossing tepary bean lines having the most rust-resistant and drought-heat tolerant tepary parents with elite University of Nebraska dry bean lines. The goal is to transfer those tepary bean resistance genes into Nebraska pinto and great northern backgrounds. Twenty-one Nebraska dry-tepary bean populations that were crossed during summer 2019 (University of Nebraska Panhandle Research Extension Center, Scottsbluff, NE) and advanced to F2 during the winter (Lincoln, NE), will be screened for drought tolerance/disease resistance during summer 2020. The most promising genotypes will be advanced to the next generations for future trials.

Table 1. Reaction of tepary and common bean genotypes to Mesoamerican and Andean races of *U. appendiculatus*

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Species</th>
<th>13-3</th>
<th>15-3</th>
<th>22-6</th>
<th>31-1</th>
<th>31-22</th>
<th>22-52</th>
<th>21-0</th>
<th>37-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinto 114</td>
<td>P. vulgaris</td>
<td>4.5</td>
<td>5.6</td>
<td>4.5</td>
<td>5.8</td>
<td>4.5</td>
<td>4.5</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Aurora (UH-3)</td>
<td>P. vulgaris</td>
<td>4.5</td>
<td>5.4</td>
<td>5.4</td>
<td>2</td>
<td>4.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Early Gallatin (UH-4)</td>
<td>P. vulgaris</td>
<td>4.5</td>
<td>4.5</td>
<td>2++</td>
<td>4</td>
<td>4</td>
<td>2++</td>
<td>4.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Golden Gate West (UH-6)</td>
<td>P. vulgaris</td>
<td>2++</td>
<td>2++</td>
<td>4</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>2++</td>
</tr>
<tr>
<td>PI 181990 (UH-11)</td>
<td>P. vulgaris</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G 40142</td>
<td>P. acutifolius</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G 40145</td>
<td>P. acutifolius</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G 40161</td>
<td>P. acutifolius</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G 40237A</td>
<td>P. acutifolius</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TEP 22</td>
<td>P. acutifolius</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TEP 23</td>
<td>P. acutifolius</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G 4064</td>
<td>P. parviflorus</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2++</td>
</tr>
<tr>
<td>G 4072</td>
<td>P. acutifolius</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
</tr>
<tr>
<td>G 40729</td>
<td>P. acutifolius</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G 40065</td>
<td>P. acutifolius</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>INB 834</td>
<td>interspecific</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>4.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>INB 841</td>
<td>interspecific</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>SET 10</td>
<td>P. vulgaris</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>VAP 1</td>
<td>interspecific</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>VAP 2</td>
<td>interspecific</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>4.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>VAP 3</td>
<td>interspecific</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>4.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>G 40084</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>2</td>
<td>3.2</td>
<td>3.2</td>
<td>2</td>
<td>2++</td>
</tr>
<tr>
<td>G 40001</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>12.3</td>
<td>12.3</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>SMR 139</td>
<td>P. vulgaris</td>
<td>4</td>
<td>4</td>
<td>3.2</td>
<td>3.2</td>
<td>4.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>G 40036</td>
<td>P. acutifolius</td>
<td>4</td>
<td>4</td>
<td>3.2</td>
<td>3.2</td>
<td>4.5</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
</tr>
<tr>
<td>G 40119</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>G 40200</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>3.2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>G 40294</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>3.2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SMR 155</td>
<td>P. vulgaris</td>
<td>4.5</td>
<td>4.5</td>
<td>3.2</td>
<td>4</td>
<td>4.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>G 40022</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.4</td>
<td>4.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>G 40068</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TEP 29</td>
<td>P. acutifolius</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SMG 214</td>
<td>P. vulgaris</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.4</td>
<td>5.4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SEN 118</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.4</td>
<td>4.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G 40111</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.4</td>
<td>4.5</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>G 40173A</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.4</td>
<td>4.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TEP 32</td>
<td>P. acutifolius</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.4</td>
<td>4.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>G 40066</td>
<td>P. acutifolius</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>4</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>G 40074</td>
<td>P. acutifolius</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>12.3</td>
<td>12.3</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Race name: Current (Original): 13-3 (43), 15-3 (47), 22-6 (49), 31-1 (53), 31-22 (67), 22-52 (108), 21-0 (72), and 37-1 (94). The first 5 races (from 13-3 to 22-52) are considered Mesoamerican, races 21-0 and 37-1 are considered Andean.

Most plants were immune but 2-3 plants were susceptible; NA = not evaluated.

Evaluation Scale: 1 = immune with no visible symptoms; 2 = symptomatic; 3 = Hypersensitive reaction (HR), no sporulation (NS) (without sporulation); 3 = Tiny sporulating pustules (less than 0.5mm in diameter); 4 = Large sporulating pustules, uredina 1.0-2.0 mm in diameter; 5 = Large sporulating pustules, uredina 2.0-3.0 mm in diameter; 6 = Very large sporulating pustules, uredina larger than 3.0mm in diameter. Plants with reaction grades 1, 2, and 3 (types of reactions) are considered resistant; plants with large pustules (grades 4, 5, and 6) are considered susceptible.

Acknowledgments: We thank Dr. Talo Pastor Corrales from the USDA for his help with the evaluation of rust resistance. We also thank the Nebraska Dry Bean Commission for their financial support, which made this work possible.
Build Your Own Bean Burger

Create your own delicious, homemade bean burger with whatever ingredients you have on hand. Switching out spices and other ingredients presents endless options for your creations.

Ingredients

1 tablespoon vegetable oil (plus more for sautéing the burgers)
One small onion, chopped
2 cloves garlic, minced
1 can beans, drained and rinsed
1 cup dry ingredients like panko, breadcrumbs, or quick oats.
1 egg

For a vegan recipe, use a flax egg by whisking together 1 tablespoon ground flax seed and 3 tablespoons water. Let sit for 10 minutes until it becomes viscous.

Seasoning: Start with 1 teaspoon of curry powder, Mexican seasoning, Italian seasoning, Cajun spice mix, or whatever flavors you want for your burger
Salt and pepper to taste
Optional: Hot sauce, soy sauce, curry paste

To make the burgers:

1. Heat the oil and sauté the onions until just translucent. Add the garlic and sauté for another minute.
2. Place the sautéed onions and garlic in a food processor and add the rest of the ingredients except the egg. Pulse until everything is well-mixed (but don’t mix long enough to create a paté)
3. Taste and adjust seasonings.
4. Add the egg and give the food processor a few more pulses to combine the egg with the rest of the ingredients.
5. If the mix is too dry, add a little broth or water. If it’s too wet, mix in more dry ingredients.
6. Form into patties and sauté until browned on both sides.

No Sew DIY Sock Bunny

With Easter coming up and the self-quarantine in place, what better activity for the kids than to create this craft with beans! Just do a google search and you will find all kinds of ideas! Good Luck!

Pinto Bean Growers

NORTHERN FEED & BEAN

CALL ON US
For all of your
Pinto Bean Market Needs!!
Experience to Serve You Best!
¥ Certified Seed
¥ Field Consulting
¥ Pinto Bean Processing & Marketing SS

MAIN OFFICE Lucerne Elevator Lucerne, CO
900-316-2326 • 970-352-7875
Larry Lands • Dean Larson
Serving Growers in Colorado, Wyoming & Nebraska for over 80 years
Receiving Locations: Ault, CO & Torrington, WY
Pulse Crop Disease Research in 2020

Introduction

Bean producers in Nebraska are affected by several commonly occurring root diseases that can cause substantial economic losses under the right environmental conditions. These diseases include Rhizoctonia and Fusarium root rots, and a root rot and foliar blight cause by several species of Pythium. These pathogens can also be are ubiquitously found in soils worldwide.

Last year we conducted several field studies based on controlling root rot disease in dry beans in Nebraska utilizing new fungicides delivered as a seed treatment. Unfortunately, the severe hailstorms in August destroyed the crops to the point we could collect no data from the studies. Thus, we could not properly judge the performance of these fungicides in managing the diseases.

New Projects in 2020

I also want to provide a snapshot of some of the pulse crop research we are planning in 2020. We will continue work with several projects using fungicide seed treatments and evaluating their performance in increasing yields and reducing levels of disease. These are new fungicides with novel modes of action, and we hope to be able to provide useful data this year that could be used by growers in the future.

We will also continue work on some of the emerging pulse crops (cowpeas, chickpeas), and monitoring and identifying diseases that they may incur within field plots. To date, from cowpeas, we have collected and identified several root pathogens unknown species of Rhizoctonia and Fusarium, and well as several bacteria resembling the wilt and common blight pathogens. Another unidentified foliar disease was seen in multiple fields in 2019, causing a leaf spot on foliage. All will be tested in the greenhouse to determine if they are capable of causing disease on dry beans. This project is being funded by the Nebraska Dry Bean Commission. We have additionally discovered white mold and Phomopsis stem canker in cowpeas (black-eyed peas), which have never been reported in this crop, to my knowledge. Both diseases can also infect other crops grown in western Nebraska such as sunflowers. These are important factors to consider when planning a farming system with any of these pulse crops in a rotation with dry beans or sunflowers, so this is the purpose for conduction this study.

Lastly, we will continue working with new products continually becoming commercially available as alternatives for copper-based products. Over the past decade, we have achieved success testing products such as SaniDate and ecoAgra A300, for reducing losses in dry bean to a complex of bacterial diseases. As new products become available, we will continue to evaluate a selection of them and compare to the copper-based and copper-alternative products for bacterial disease control. This project is also being funded by the NDBC. We also have an interest in and plan to test these same chemical products on reducing losses from several fungal diseases of pulse crops such as Ascochyta blight in chickpeas and white mold and rust in dry beans.
Quick Refried Beans

Robert M. Harveson, Extension Plant Pathologist
University of Nebraska, Panhandle REC, Scottsbluff

In my mind, refried beans are a required staple of almost any Mexican food meal. I have generally made this with left-over beans from other meals. However, if no left-overs are available, I have developed another method to prepare this dish from scratch without the time investment needed for cooking dry beans.

Ingredients:

- ¼ cup vegetable oil
- 3-4 cloves of garlic (depending on preference)
- 1-2 slices of bacon (chopped)
- 2-3 cans of pinto beans
- 1 can of refried beans

Fry bacon pieces in oil for 5-8 minutes. Add garlic crushed or finely diced and continue sautéing in oil for another 5 minutes. You are flavoring the oil, but be careful not to scorch the garlic! It will ruin flavors of all ingredients later. Add canned pinto beans, undrained. Bring to a boil, reduce heat to low and simmer for another 15-20 minutes to further cook beans. Canned pintos are often still a little crunchy. After heating beans to preferred consistency, mash all beans with remaining canned juice with a potato masher. Add a can of refried beans and stir until completely blended with mashed beans, salt to taste, and leave on low heat until thoroughly heated.
As the temperatures warm up and winter winds down planting season will soon be here. In preparation we want to share the data and results from our 2019 growing season dry bean population studies. Included are three studies which were direct harvested. In these times of financial struggle in agriculture it is important to consider where money may be saved. These studies allow you to see various populations and the resulting yields, harvest losses and the associated net marginal returns. In 2019 populations were targeted above and below the grower’s standard desired population. In the upcoming 2020 growing season we will continue the studies to get more data on population as it is reflected by yield and harvest loss. We want to look further at population in studies that are drilled in addition to the studies where a planter is used.

It is interesting to note as you review the following studies that in Morrill County with a population spread of 52,641 and Cherry County with a population spread of 28,641 no significant differences in yield or marginal net return were noted. In Box Butte County with a population spread of 56,234 a 5bu/ac increase in yield was noted but no significant difference in marginal net return. The beans were stunted in Box Butte County with the field having a history of nematodes. The average yield was very poor at the Box Butte County site (19 bu/ac) and the greater population yielded better due to the plant stunting and inability for bean plants to close rows and grow aggressively.

For beans planted in 10 studies over 4 years with population differences ranging from 27,859 to 56,234 within the studies, only three studies had significant yield differences. In these cases, the higher population yielded higher. Only one study had a significantly different Marginal Net Return and it was in the high population. Based on this data growers may be able to reduce seeding rates and save money while maintaining competitive yields. Further studies with a few more years of data will strengthen these recommendations.

For further information and results from Nebraska studies visit the On-Farm Research website: https://cropwatch.unl.edu/on-farm-research or the results finder on the On-Farm Research website http://resultsfinder.unl.edu/ to connect with on-farm research and access other dry bean studies from the past few years.

Pinto Bean Planting Population for Direct Harvest (Morrill County)

<table>
<thead>
<tr>
<th>Study ID: 0809013201902</th>
<th>County: Morrill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Type: Valentine sandy loam 3-9% slopes</td>
<td>Herbicides: Pre: 2 pt/ac Prowl®, 14 oz/ac Outlook®, 22 oz/ac Roundup PowerMax®</td>
</tr>
<tr>
<td>Planting Date: 6/4/19</td>
<td>Post: 21 oz/ac Varisto®, 8 oz/ac Basagran®, 7 oz/ac Outlook®; Desiccation with 2 oz/ac Sharpen®, 2 pt/ac Gramoxone® on 9/5/19</td>
</tr>
<tr>
<td>Harvest Date: 9/13/19</td>
<td>Seed Treatment: Maxim®, Apron®, Dynasty®, Cruiser®, and Vibrance®</td>
</tr>
<tr>
<td>Row Spacing (in): 20</td>
<td>Irrigation: Pivot, Total: 8</td>
</tr>
<tr>
<td>Variety: Vibrant</td>
<td>Rainfall (in):</td>
</tr>
</tbody>
</table>
Introduction: The purpose of this study was to compare several planting rates of dry edible beans (Vibrant pinto variety) planted in 20” row spacing. Target populations were 60,000, 100,000, and 130,000 plants/ac, however the planting equipment used resulted in seeding rates which differed from the intended rate. Actual populations were determined by early-season stand counts and were 50,300, 81,820, and 102,942 plants/ac, respectively. To estimate the treatment seeding rate and subsequent seed costs, 10% was added to the stand count values; this resulted in treatment seeding rates of approximately 55,000, 90,000, and 113,000 seeds/ac, and assumes all treatments had similar emergence and germination. The plots were direct harvested on September 13 with a John Deere® S680 combine and MacDon® FD75-S 35 foot flex draper head. The temperature at harvest was 76°F with 31% relative humidity. There was no hail, very little disease, and very good weed control.

Samples from each plot were analyzed for bean quality parameters. Pod height measurements were taken to determine the percent of pods 2” or greater above the soil surface. Harvest loss estimates were determined by taking counts in one-square-foot frames randomly chosen in the harvested area, but equally representing the left side of header, center of header, and right side of header area behind the combine.

Figure 1. Reduced biomass for the lower population treatment is visible in aerial imagery from July 9 (left). By late July and early August treatment differences were no longer visible as evidenced in aerial imagery from August 5 (right).

Results:

<table>
<thead>
<tr>
<th>Treatment (seeds/ac)</th>
<th>Stand Count (plants/ac)</th>
<th>Pods > 2” above-ground (%)</th>
<th>Harvest Loss (bu/ac)</th>
<th>Foreign Material (%)</th>
<th>Damaged (%)</th>
<th>Moisture (%)</th>
<th>Density (lbs/bu)</th>
<th>Seeds per lb</th>
<th>Yield (bu/ac)†</th>
<th>Marginal Net Return‡ ($/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,000</td>
<td>50,300 C*</td>
<td>81 B</td>
<td>2.5 A</td>
<td>2 B</td>
<td>1 A</td>
<td>0 A</td>
<td>0.7 A</td>
<td>13.4 A</td>
<td>59.7 A</td>
<td>1,233 A</td>
</tr>
<tr>
<td>100,000</td>
<td>81,820 B</td>
<td>89 A</td>
<td>2.0 A</td>
<td>5 A</td>
<td>1 A</td>
<td>1 A</td>
<td>0.8 A</td>
<td>13.4 A</td>
<td>61.8 A</td>
<td>1,215 A</td>
</tr>
<tr>
<td>130,000</td>
<td>102,941 A</td>
<td>90 A</td>
<td>2.2 A</td>
<td>4 A</td>
<td>1 A</td>
<td>1 A</td>
<td>1.0 A</td>
<td>13.4 A</td>
<td>62.1 A</td>
<td>1,213 A</td>
</tr>
<tr>
<td>P-Value</td>
<td><0.0001</td>
<td>0.002</td>
<td>0.184</td>
<td>0.015</td>
<td>0.542</td>
<td>0.983</td>
<td>0.571</td>
<td>0.974</td>
<td>0.386</td>
<td>0.826</td>
</tr>
</tbody>
</table>
Summary:

- Reduced biomass for the lower population treatment was visible in early season imagery, but by late July and early August treatment differences were no longer visually apparent (Figure 1).
- The percent of pods greater than 2” above the soil was greater for the 100,000 and 130,000 seeds/ac treatment, however the 60,000 seeds/ac treatment, still had 81% of pods greater than 2” above the ground.
- The 60,000 seeds/ac treatment had a lower percentage of small seeds than the 100,000 and 130,000 seeds/ac treatments.
- There were no differences in harvest loss, percent split, percent foreign material, percent damage, moisture, density, and seeds per lb.
- There was no difference in yield or marginal net return among the three populations tested. It is interesting to note that the higher populations did not result in significantly higher yields.
- Damage was less than 3% so no price dockage occurred as it did in many other fields in the area.
- The surrounding field was planted to Vibrant variety pintos and the overall average yield was 57 bu/ac.

Pinto Bean Planting Population for Direct Harvest (Box Butte County)

Study ID: 0809013201901
County: Box Butte
Soil Type: Valentine loamy fine sand 0-3% slope
Planting Date: 6/8/19
Harvest Date: 9/24/19
Row Spacing (in): 20
Variety: Radiant
Reps: 4
Previous Crop: Corn
Tillage: Vertical tillage, rolled field after planting, rotary hoe after planting
Herbicides: Pre: 2 pt/ac Prowl®, 14 oz/ac Outlook®, 22 oz/ac Roundup PowerMax® Post: 21 oz/ac Varisto®, 8 oz/ac Basagran®, 7 oz/ac Outlook®; Desiccation with 2 oz/ac Sharpen® and 2 pt/ac Gramoxone® on 9/15/19
Seed Treatment: Radiant Pinto Variety treated with Maxim®, Apron®, Dynasty®, Cruiser®, and Vibrance®
Foliar Insecticides: None
Foliar Fungicides: 12 oz/ac Approach®, 4 oz/ac Awaken, 1 application Champ® (copper)
Fertilizer: 10 gal/ac 10-34-0 (banded), 5 gal/ac Thio-Sul, 1 gal/ac Awaken with coulter machine; 2 gal/ac 10-34-0, 4 gal/ac Riser® (7-17-3), and 4 oz/ac Radiate (Indolebutric Acid and Cytokinin) in-furrow at planting
Note: field was hailed
Irrigation: Pivot, Total: 9-10
Rainfall (in):

Soil Test (Dec. 2018) – 1 sample taken in the study area:

<table>
<thead>
<tr>
<th>Soil</th>
<th>Nitrate-N</th>
<th>Ammonium Acetate ppm</th>
<th>% Base Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>1:1</td>
<td>1:1</td>
<td>Excess Lime Rating</td>
</tr>
<tr>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>6.9</td>
<td>0.2</td>
<td>L</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Introduction: The purpose of this study was to compare several planting rates of dry edible beans (Radiant pinto variety) planted in 20" row spacing. Target populations were 60,000, 100,000, and 130,000 plants/ac, however the planting equipment used resulted in seeding rates which differed from the intended rate. Actual populations were determined by early-season stand counts and were 52,369, 87,699, and 108,603 plants/ac, respectively. To estimate the treatment seeding rate and subsequent seed costs, 10% was added to the stand count values; this resulted in treatment seeding rates of approximately 57,600, 96,470, and 119,460 seeds/ac, and assumes all treatments had similar emergence and germination. The plots were direct harvested on September 24 with a John Deere® S680 combine and MacDon® FD-75 35 foot flex draper head. Samples from each plot were analyzed for bean quality parameters. Pod height measurements were taken to determine the percent of pods 2” or greater above the soil surface. Harvest loss estimates were determined by taking counts in one-square-foot frames randomly chosen in the harvested area, but equally representing the left side of header, center of header, and right side of header area behind the combine. The field experienced some damaging hail with an estimated 15 bu/ac loss. Plants remained small on this study location probably due to a historical nematode infestation on this field.

Results:

<table>
<thead>
<tr>
<th>Treatment (seeds/ac)</th>
<th>Stand Count (plants/ac)</th>
<th>Pods > 2" above-ground (%)</th>
<th>Harvest Loss (bu/ac)</th>
<th>Small (%)</th>
<th>Split (%)</th>
<th>Foreign Material (%)</th>
<th>Damaged (%)</th>
<th>Moisture (%)</th>
<th>Density (bu/bu)</th>
<th>Seeds per lb</th>
<th>Yield (bu/ac)†</th>
<th>Marginal Net Return‡ ($/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60,000</td>
<td>52,369 C*</td>
<td>66 B</td>
<td>4 A</td>
<td>3 A</td>
<td>1 A</td>
<td>4.3 A</td>
<td>9.6 A</td>
<td>60.7 A</td>
<td>1,329 A</td>
<td>16 B</td>
<td>200.41 A</td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>87,699 B</td>
<td>76 A</td>
<td>8.4 A</td>
<td>2 A</td>
<td>1 A</td>
<td>4.4 A</td>
<td>9.6 A</td>
<td>59.8 A</td>
<td>1,328 A</td>
<td>21 A</td>
<td>242.66 A</td>
<td></td>
</tr>
<tr>
<td>130,000</td>
<td>108,603 A</td>
<td>75 AB</td>
<td>7.5 A</td>
<td>2 A</td>
<td>1 A</td>
<td>3.4 A</td>
<td>9.5 A</td>
<td>60.3 A</td>
<td>1,362 A</td>
<td>20 AB</td>
<td>208.04 A</td>
<td></td>
</tr>
</tbody>
</table>

P-Value <0.0001 0.033 0.011 0.926 0.243 0.997 0.378 0.670 0.156 0.414 0.084 0.321

*Values with the same letter are not significantly different at a 90% confidence level.
†Bushels per acre adjusted to 14% moisture and adjusted for clean yield (% splits, % small, and % foreign material removed).
‡Marginal net return based on $25/cwt ($15/bu at 60lb/bu). Seed cost for the bean seed was $73/100,000 seeds. Seed costs for each treatment were adjusted to represent the estimated actual seeding rate based on field stand counts: $42.08/ac for 60,000 seeds/ac, $70.42/ac for 100,000 seeds/ac, and $87.21/ac for 130,00 seeds/ac.

Summary:

• Plants didn’t get very tall, so many pods were near the ground. The percent of pods greater than 2” above the soil was greater for the 100,000 and 130,000 seeds/ac treatment. For the 60,000 seeds/ac treatment, only 66% of pods were greater than 2” above the ground.
• Harvest loss was highest for the 60,000 seeds/ac treatment. This is expected as the 60,000 seeds/ac treatment had a greater percentage of pods lower than 2” above the ground. Harvest loss for all treatments was higher than desired, with the lowest harvest loss at 7.5 bu/ac.
• There were no differences in percent small, percent split, percent foreign material, percent damage, moisture, density, and seeds per lb.
• Yields for all treatments were lower than desired due to a nematode infestation and 15-20% hail loss. The 100,000 seeds/ac treatment resulted in a higher yield than the 60,000 seeds/ac treatment. Increasing the seeding rate to 130,000 seeds/ac did not result in additional yield gains.
• There was no difference in net return among the three populations tested.
• Market value for net return was adjusted for beans having more than 3% damage in Pinto beans.
• The surrounding field was planted to Radiant variety pintos and the overall average yield was 19.6 bu/ac.
Introduction: The purpose of this study was to compare several planting rates of dry edible beans (La Paz pinto variety) planted in 20" row spacing. Target populations were 100,000 and 130,000 plants/ac, however the planting equipment used resulted in seeding rates which differed from the intended rate. Actual populations were determined by early-season stand counts and were 96,703 and 125,344 plants/ac, respectively. To estimate the treatment seeding rate and subsequent seed costs, 10% was added to the stand count values; this resulted in treatment seeding rates of approximately 106,370 and 137,830 seeds/ac, and assumes all treatments had similar emergence and germination. The plots were direct harvested on September 17 with a John Deere® 780 combine and John Deere® 635 flex draper header and Crary Wind System. Temperature at harvest was 77°F at 54% relative humidity.

Samples from each plot were analyzed for bean quality parameters. Pod height measurements were taken to determine the percent of pods 2” or greater above the soil surface. Harvest loss estimates were determined by taking counts in one-square-foot frames randomly chosen in the harvested area, but equally representing the left side of header, center of header, and right side of header area behind the combine.
Results:

<table>
<thead>
<tr>
<th>Treatment (seeds/ac)</th>
<th>Stand Count (plants/ac)</th>
<th>Pods > 2" above-ground (%)</th>
<th>Harvest Loss (bu/ac)</th>
<th>Small (%)</th>
<th>Split (%)</th>
<th>Foreign Material (%)</th>
<th>Damaged (%)</th>
<th>Moisture (%)</th>
<th>Density (lbu/bu)</th>
<th>Seeds per lb</th>
<th>Yield (bu/ac)†</th>
<th>Marginal Net Return‡ ($)/ac</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>96,703 B</td>
<td>1.5 A</td>
<td>3 A</td>
<td>1 A</td>
<td>0 A</td>
<td>5.9 A</td>
<td>15.3 A</td>
<td>60.6 A</td>
<td>1,408 A</td>
<td>33 A</td>
<td>364.27 A</td>
<td>0.094</td>
<td><0.0001</td>
</tr>
<tr>
<td>130,000</td>
<td>125,344 A</td>
<td>1.5 A</td>
<td>4 A</td>
<td>0 A</td>
<td>0 A</td>
<td>8.0 A</td>
<td>15.5 A</td>
<td>60.0 B</td>
<td>1,378 A</td>
<td>34 A</td>
<td>311.43 B</td>
<td>0.094</td>
<td><0.0001</td>
</tr>
<tr>
<td>P-Value</td>
<td>0.003</td>
<td>0.878</td>
<td>0.387</td>
<td>0.154</td>
<td>0.462</td>
<td>0.130</td>
<td>0.566</td>
<td>0.068</td>
<td>0.409</td>
<td>0.677</td>
<td>0.094</td>
<td>0.094</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Values with the same letter are not significantly different at a 90% confidence level.
†Bushels per acre adjusted to 14% moisture and adjusted for clean yield (%split, %small, and % foreign material removed).
‡Marginal net return based on $25/cwt ($15/bu at 60lb/bu). Seed cost for the bean seed was $69.50/100,000 seeds. Seed costs for each treatment were adjusted to represent the estimated actual seeding rate: $73.93/ac for 100,000 seeds/ac, and $95.79/ac for 130,000 seeds/ac treatment

Summary:

- Reduced biomass for the lower population treatment was visible in early season imagery, but by late July and early August treatment differences were no longer visually apparent (Figure 2).
- The percent of pods greater than 2” above the soil was greater for the 130,000 seeds/ac treatment than the 100,000 seeds/ac treatment. Pod heights were fairly good for these treatments with the 130,000 population holding pods significantly higher than the 100,000 population.
- Harvest loss was not different between the two populations tested and was very low.
- There were no differences in percent small, percent split, percent foreign material, percent damage, moisture, and seeds per lb.
- There was no yield difference among the two populations tested.
- The surrounding field was planted to La Paz variety Pinto beans and the overall average yield for the surrounding field was 33.4 bu/ac.
- Market value for net return was adjusted for beans having more than 3% damage in Pinto beans.
- Increasing the seeding rate from 100,000 seeds/ac to 130,000 seeds/ac resulted in lower net returns due to increased seed cost and no yield advantage.
- The lower target population of 60,000 beans/ac was intended for this study but data was lost due to harvest complications.
Multi-cookers, one of the most popular kitchen appliances today, can be used as a pressure cooker, a yogurt maker, a rice maker, or to steam, sauté or keep food warm. Multi-cookers are a quick and easy way to cook dry edible beans, and Nebraska Extension has hosted several how-to workshops in Garden, Scotts Bluff and Morrill counties over the last several months with funds provided by a grant from the Dry Bean Commission.

Over 180 individuals have participated in a multi-cooker class or demonstration in the last year. Class participants learned how to successfully and safely operate a multi-cooker while creating quick, healthy and safe meals for the family.

Multi-cookers make it possible to get a home-cooked, healthy, last-minute meal on the table quickly. Class participants receive a copy of the Kelley Bean Co. Cookbook and a take-home guide on “How to Cook Beans and Legumes in your Multi-Cooker.” The dry beans can be cooked in the multi-cooker in as little as 20-45 minutes, depending on the market class of beans. Starting with soaked beans, the cooking time is 6 to 20 minutes.

Quotes from some of the participants:

“Enjoyable day – learned many ways to use the cooker. I have one but didn’t know how to use it. Now I’m ready to try it.”

“Very enjoyable. Hands-on was a great idea. Learned many things I am going to try, like eggs and beans.”

“I was very happy to learn how to use my multi-cooker and am excited about getting started with it.”

Watch for future classes. To receive notification of classes please email tostdiek5@unl.edu and include your name, email and a phone number.
Multi-Cooker Black Beans

1 cup black beans, sorted, rinsed and soaked for 8-12 hours
1 teaspoon onion powder
1 teaspoon garlic powder
1 bay leaf
½ teaspoon salt
2 ½ cups low-sodium vegetable broth, chicken broth, or water

1. Wash hands with soap and warm water.
3. Place lid on multi-cooker and lock according to manufacturer’s instructions. Make sure the valve is set to sealing position.
4. Cook on high pressure for 8 minutes.
5. Allow the pressure to release naturally for 15 minutes. Quick release any remaining pressure.
6. Once pin drops, remove lid.

The cooked beans can be used in recipes such as Chicken Beans and Rice Burrito Bowl, in salads, or as a side dish.

Chicken, Beans and Rice Burrito Bowls

Ingredients:
1 1/2 tablespoons canola or vegetable oil
1 medium yellow onion, diced
2 cloves garlic, minced
1 tablespoon chili powder
1 1/2 teaspoons ground cumin
1 cup low-sodium chicken broth, divided
1 1/2 pounds boneless, skinless chicken breasts or thighs, cut into 1-inch pieces
Kosher salt
Freshly ground black pepper
2 cups cooked black beans
1 (15-ounce) can corn kernels, drained
1 (16-ounce) jar salsa
¾ cup long-grain white rice
½ cup shredded low-fat sharp cheddar cheese
¼ cup coarsely chopped fresh cilantro

Instructions
Serves 4 to 6
1. Wash hands with soap and water.
2. Add the oil to the Multi-cooker, turn on sauté setting, and heat until shimmering. Add the onion and garlic and cook, stirring occasionally, until softened.
3. Stir in the chili powder and cumin and cook until fragrant, about 30 seconds.
4. Add 1/4 cup of the chicken broth and cook, gently scraping the bottom of the pot with a wooden spoon to loosen any stuck-on bits.
5. Season the chicken all over with the salt and pepper. Add the chicken, beans, corn, salsa, and stir to combine. Wash hand after handling raw chicken.
6. Sprinkle the rice over the top. Pour the remaining 3/4 cup broth over the rice, but do not stir.
7. Using the manual setting, set the pressure to HIGH for 10 minutes. Close and lock the lid. It should take the pressure cooker about 10 to 12 minutes to come to pressure and begin the 10 minute countdown.
8. When the cooking time is complete, naturally release pressure for 5 minutes, then a quick release of the pressure. Wait for the pin to drop before opening the lid.
9. Gently stir everything together. Divide between bowls and top with the cheese and cilantro.
Storage: Leftovers can be stored in an airtight container in the refrigerator for up to 4 days.
Nebraska Panhandle dry bean producers are facing the challenges of mandated ground water pumping restriction and unstable surface water supply. When water is limited, it is critical to understand dry bean water use and apply proper irrigation management to prevent yield losses. This article will talk about dry bean water use characteristics and some water-limiting irrigation management strategies that have been proven at western NE.

Crop water use, or evapotranspiration (ETc), can be categorized into soil evaporation (E) and plant transpiration (T). The rate of ETc is governed by atmospheric demand such as solar radiation, wind speed, relative humidity, and air temperature. The rate of ETc is also governed by size and growth stage of plants. In western NE, you can imagine that our atmospheric demand is higher than eastern NE due to higher wind speed and lower relative humidity. During early growth stage of dry bean, soil evaporation dominates against plant transpiration since plants are small and most soil are exposed. As dry bean gets bigger and more canopy closure is achieved, soil evaporation is decreased and plant transpiration will dominate. When managing irrigation for dry bean, we divide dry bean growth stages into vegetative and reproductive stages. Then the reproductive stages are furthered divided into flowering and pod-filling, as shown in Figure 1. From the two years’ data at research plots of Panhandle Research Extension Center, dry bean at fully irrigated plots (crop gets what they need) used 2-2.5 inches of water from planting to first shown of flowering (vegetative stage), and used 7 inches of water from flowering to harvest (reproductive). Highest yield registered at the research plot was around 50 bu/acre in 2018. In 2019, yield was not available due to severe hail storm. When dry bean canopy cover was around 35%, its weekly water use was about 0.25 inches; at canopy cover around 50% - 60%, its weekly water use was about 0.75 inches; towards end of July when canopy cover was maximum or full and begun reproductive stage, dry bean water use reaches maximum and is about 1.25 to 1.5 inches on weekly basis. After all pods are fully elongated and shifting the focus to fill the seeds, it gradually use less water to about 1 – 1.25 inches per week. At dry down, dry bean uses about 0.75 inches water per week. At senescence, dry beans uses about 0.3~0.5 inches water per week. It should be noted that the numbers provided above are based on weather data, soil type, and management from research plots at PHREC. To determine dry bean canopy cover, the irrigation program at PHREC has developed a software called Canopy Cover Image Analyzer (CCIA) (funded by Nebraska Dry Bean Commission). To obtain a copy of CCIA, please contact us using information below. Readers are also suggested to refer to NebGuide G1465 and or website: https://nawmn.unl.edu/GrowthStageData for more information on dry bean water use.
So far we have talked about how dry bean uses water at non-water limiting conditions. What if water becomes limited? Which stage can I water stress my beans without significant yield penalty? Before we get into details, let’s talk about two definitions: deficit irrigation and limited irrigation. Deficit irrigation refers to apply less than optimal water to plants during certain growth stages when they are not that sensitive to shortage of water while maintaining optimal water supply during water-sensitive stages. Taking Figure 2 as examples, deficit irrigation is 50% of full irrigation at beginning, full irrigation at middle, and 50% of full irrigation in the end; limited irrigation refers to supply less than optimal water during the whole growing season and in this case it is 75% of full irrigation. Previous results by Dean Yonts et al have shown that on average, 75% limited irrigation cause 6% yield reduction for dry bean. Also, when early season rainfall is abundant, water deficits before flowering outperformed deficits that are targeting after flowering. Under normal or dry year, producers should not water stress dry bean before flowering since yield penalty could be more severe. Producers should also be mindful of rainfall they have received at the fields, type of irrigation system, capacity and efficiency, soil texture, etc. It is best to have sensors such as soil water sensors, infrared radiometry, or onsite weather station to obtain more accurate results.

In 2020, we will lively update dry bean water use on our fully irrigated plots, as well as our deficit and limited irrigation plots using website: phrec-irrigation.com. Please contact Dr. Xin Qiao, irrigation management specialist at PHREC at xin.qiao@unl.edu or 308-632-1240 if you have any questions.
Nebraska dry bean industry representatives meet with Ambassador Gregory Doud, Chief Agricultural Negotiator, Office of the U.S. Trade Representative and Secretary of State Robert Evnen

Members of the Nebraska dry bean industry had the opportunity to meet with Ambassador Gregory Doud, Chief Agricultural Negotiator Office of the U.S. Trade Representative during the 2020 Governor’s Ag Conference.

Ambassador Doud was a keynote speaker at the Governors Ag Conference where he discussed the recent USMCA, Japan, and China trade agreements along with the possible challenges with the European Union and United Kingdom. Ambassador Doud also spoke about the future opportunities for agricultural products around the world.

The Nebraska dry bean industry wishes to thank Ambassador Doud for taking the time to discuss international policy issues of concern and the impact retaliatory tariffs have had on Nebraska dry bean industry.

“BE”an At Your Best Nebraska ProStart Competition

Beginning with the 2019-2020 school year, the Nebraska Dry Bean Commission announced the “BE”an At Your Best competition where Nebraska ProStart schools could compete for Best Use of Dry Beans Traveling Trophy and $2,500.00 in support of a Nebraska School ProStart team that demonstrates the Best Use of Dry Beans as Menu Item Ingredient in the 2020 Nebraska State ProStart Culinary Competition. The Nebraska ProStart State Culinary Competition was held on March 5, 2020 at the Metropolitan Community College’s Institute for the Culinary Arts in Omaha, NE.

Required the use of Nebraska grown varieties, great northern, pinto, Light red kidney, black, pink and navy beans as the primary ingredient in two menu items:

- Starter (Soup, Salad, Appetizer)
- Center of the Plate (Entrée, Sides)
- Dessert

Winners of “BE”an At Your Best Competition
Lincoln Southwest ProStart team
Chairman’s Comments

By Brian Kaman

On behalf of the Nebraska Dry Bean Commission members, I would like to congratulate Dave Weber for being elected President of the Rocky Mountain Bean Dealers Association (RMBDA) and Courtney Schuler for being elected as the Vice President. I had the opportunity to attend the RMBDA’s Annual meeting, I was impressed by their program and speakers.

Nebraska grown dry edible beans were featured at USDA’s “Ag Connections Café” on March 3-5, 2020, this was an exciting opportunity to showcase quality dry beans produced by Nebraska producers. Sysco chefs featured great northern bean cassoulet and pinto beans in Sandhills Cowboy beans, 120 patrons a day were given the opportunity to experience quality products produced in Nebraska.

I had the opportunity to attend the Governor’s Ag Conference on March 9-10th. This was my first experience attending this program and want to commend the Nebraska Department of Agriculture for assembling a very interesting program, I would encourage producers to consider attending the Governor’s Ag Conference in the future.

Nebraska dry bean industry representatives had the opportunity to visit with Ambassador Gregg Doud, Chief Agricultural Negotiator Office of the U.S. Trade Representative as a side meeting on March 10th. Ambassador Doud has been involved in negotiating the recent trade agreements with Japan, USMCA, and China and indicated discussion are ongoing with UK and European Union. Nebraska representative took the opportunity to discuss how the EU retaliatory tariffs have impacted Nebraska’s dry bean industry.

NDBC will take every opportunity to stress the importance international trade.

I want to wish everyone a safe and healthy spring.
Notice is hereby given that the terms of four members on the Nebraska Dry Bean Commission will expire on May 30, 2020 and is seeking candidates to petition for the following openings.

District 1 – Includes the counties of Sioux, Dawes, Box Butte and Sheridan counties. David Howell, the current District 2 grower representative has indicated he will pursue reappointment. This position will be appointed by the Governor.

At-Large Grower Representative for Districts 1 and 2 – Includes the counties of Scotts Bluff, Sioux, Dawes, Box Butte, and Sheridan. Jeff Jenkins, the current At-Large Grower Representative for Districts 1 and 2 has indicated he will pursue reappointment. This is a Board Appointed position.

At-Large Grower Representative for Districts 3 and 4 – Includes the counties of Banner, Kimball, Morrill, Garden, Cheyenne, Deuel and all counties east of the Panhandle. This is a Board appointed position.

District 4 Grower Representative for District 4 – includes all counties east of the Panhandle. This position will be appointed by the Governor.

Processor Representatives – Dave Weber, the current Processor Representative has indicated he will pursue reappointment. An additional Processor Representative opening has occurred due to Nolan Berry’s retirement. These positions will be appointed by the Governor.

Appointment of District 1 Grower Representative and Processor Representatives are made by the Governor of Nebraska. The At-Large Grower Representative appointment is made by the board. Any candidate seeking appointment may place his or her name on the candidacy list by filing a petition with the Nebraska Dry Bean Commission. Qualified candidates include those individuals who are citizens of Nebraska, are at least 21 years of age, have been actively engaged in growing dry edible beans in Nebraska for a period of at least three years, and derive a substantial portion of their income from growing dry edible beans. Grower petitions must be accompanied by a Grower Candidate Petition signed by at least 10 resident bean growers from the district in which he or she resides.

Applications and candidate petitions may be obtain by writing or calling the Nebraska Dry Bean Commission office at 4502 Ave I, Scottsbluff, NE 69361, calling (308) 632-1258 or emailing driediblebeans@nebraska.gov. All petitions must be received by the Nebraska Dry Bean Commission no later than 5:00 p.m. MST on Thursday, April 9, 2020.

The Rocky Mountain Bean Dealers held their annual meeting in Denver, Colorado on March 6-7th, 2020. During the annual meeting officers were elected for 2020-2021.

2020-2021 RMBDA Executive Committee:
President—Dave Weber, New Alliance Bean
Vice President—Courtney Schuler, Trinidad Benham Corporation
Secretary/Treasurer—Mike Byrne, Russell E. Womack, Inc.

Nebraska Dry Bean Commission would like to recognize Judd Keller, Kelley Bean Company, for his dedication to the dry bean industry in the Rocky Mountain region. Judd has serve on the RMBDA Board for 16 years and as president for 6 years.

RMBDA was organized in 1916 to advance the general interests of its members and those engaged in the handling of beans throughout the Rocky Mountain States, and to inculcate just and equitable principles in trade, establish and maintain uniform grades of beans and secure their adoption in the markets of the country; to acquire, preserve and disseminate valuable business information; to define and enforce rules for arbitrating any differences that may arise between buyers and sellers of beans and generally perform any act appertaining to the said industry for the benefits of its members not in conflict with the laws of said States or of the United States.

NDBC is a dues paying Associate Member of the Rocky Mountain Bean Dealers.
Nebraska Grown Dry Beans Included in USDA Ag Connections Café

The State of Nebraska was featured at the United States Department of Agriculture’s “Ag Connections Café” from March 3-5, 2020. This café features a buffet-style dining experience that serves up to 120 patrons a day.

On March 3rd, Secretary Sonny Perdue, Undersecretary Greg Ibach, Senators Deb Fischer and Ben Sasse and Representatives Don Bacon, Jeff Fortenberry and Adrian Smith joined Amelia Breining, Assistant Director Nebraska Department of Agriculture, for a working lunch.

Nebraska Department of Agriculture partnered with commodity boards and industry leaders to donate product and/or provide monetary support for transportation for chefs. NDA partnered with Sysco for this event, four chefs from the company created a menu and travelled to D. C. to prepare food throughout the event.

Daily menus featured beef from Greater Omaha, Chickens from Lincoln Premium Poultry, Pork from Tyson, Nebraska honey and Great Northern and Pinto beans from Kelley Bean Company, New Alliance Bean and Trinidad Benham. Nebraska dry beans were featured in Nebraska great northern bean cassoulet and Chimney Rock Pork Green Chili with Tortillas and Sandhills cowboy beans.

Canadian Parliament ratifies USMCA

On March 13, 2020, the Canadian Parliament officially approves the new U.S.—Mexico—Canada (USMCA) trade agreement. Canada was the last of the three signatories to formally adopt the agreement. With the agreement officially being ratified by all three parties, it will allow the three countries to begin working collaboratively to implement the agreed-upon standards for trade.

Canada was the last party to adopt the trade agreement after having been ratified by Mexico in June 2019 and signed into law by President Donald Trump on January 20, 2020. U. S. Trade Representative Robert Lighthizer has notified Congress that USMCA will go into effect on June 1, 2020.

U.S. Secretary of Agriculture Sonny Perdue issued the following statement on March 13, after the Canadian Parliament approved the United States-Mexico-Canada Agreement (USMCA).

“USMCA is a great victory for America’s agriculture industry, and I am pleased to see Canada’s Parliament approved the deal today. USMCA locks in and expands access to our neighbors to the North and South,” Perdue stated. “I thank President Trump for negotiating this deal and for always supporting America’s farmers and ranchers. We will continue to work with both Canada and Mexico in implementing this agreement.”

USMCA was signed into law by President Donald J. Trump on January 29, 2020, after it received overwhelming bipartisan support in Congress. All three countries are working together closely on implementation in advance of the agreement’s entry into force.

Canada and Mexico are the United States’ first and second-largest export markets for United States food and agricultural products, totaling more than $39.7 billion food and agricultural exports in 2018. These exports support more than 325,000 American jobs.

The USMCA was designed to replace the North American Free Trade Agreement (NAFTA) which has been in force since January 1, 1994, at this time the agreement was the largest free market in the world.

To learn more about the United States—Mexico-Canada trade agreement visit the Office of the United States Trade Representative website at https://ustr.gov
PLEASE HELP!
We need to keep our mailing list for “The Bean Bag” up to date so if your mailing address has or will be changed, please give us a call at:

(308) 633-1387 or email to:
nebeangrower@allophone.com
or mail the changes to us at:

4502 Avenue I, Scottsbluff, NE 69361

If you raise beans, are a land owner or a bean processor and want to receive the Bean Bag, please contact us and we will get you added to the list.

If you no longer want to receive the Bean Bag please contact us at any of the above options to remove your name.

Thank you!
The Bean Bag is supported by vendor ads and bean checkoff dollars.

Nebraska Dry Bean Growers Association
4502 Avenue I
Scottsbluff, NE 69361